abnormal in appearance. The result in this lizard is a trifurcation that has produced a cluster of three supernumerary caudal extensions (Fig. 1C). We conclude that caudal autotomy and regeneration in whiptail lizards are examples of adaptive responses that are stimulated by a traumatic event, the nature of which on rare occasions results in production of non-adaptive structures (i.e., growth of supernumerary caudal extensions).

CARLIA CURTA (Papuan Litter Skink) and CARLIA MYSI (Mys’ Rainbow Skink). MASS AVIAN PREDATION. Carla curta and C. mysii are common lizards of the grasslands of the northern versant of the Papuan Peninsula, Papua New Guinea, and they occur in abundance on the disused Second World War airstrip at Dobudora, Oro (Northern) Province, Papua New Guinea (8.793950°S, 148.320333°E) located 9.5 km ESE of the provincial capital Popondetta, and 2 km NE of the domestic airport at Girua, on the eastern banks of the Girua River.

The area is low-lying (40–80 m elev.) and largely comprises grassland, swamp, small areas of tropical forest, and oil palm plantations. The grasslands are subjected to frequent and deliberate burns, set by villagers, whether clearing land for gardens, or hunting bandicoots, and fire is an ever-present factor in the

Fig. 1. A) 13:04:57 Hawk A stoops on Skink 1, Hawk B wheels towards Skink 2. B) 13:04:59 Hawk A has taken Skink 1; Hawk B is almost upon Skink 2; Hawk C, approaching from down the road, wheeling to stoop on Skink 3. C) 13:05:01 Hawks A, B and C have all taken skinks, only Skink 4 remains.
environment. During the present (August 2013) and previous (September 2006) visits to Dobudora there have always been two or three fast-burning fires on the grasslands. Wildlife has to adapt to the constant threat it poses.

Some wildlife benefit from these continual, dry-season daily, grassland fires. Birds of prey, primarily Black Kites (*Milvus migrans*), were seen in very large numbers in the vicinity of Dobudora in August 2013, congregating on trees in close proximity to the fires, or following behind the flames scavenging carcasses. Twenty were seen at any one time wheeling in the sky, up to 12 perching in a single, spindly leafless tree.

Even before the flames reached the dirt road, both species of skinks were observed running out onto its exposed sandy surface, clearly disoriented by the heat, some making the safety of the opposite side of the road, others running in circles, or even back towards the fire. At this point the kites were observed to change their hunting behavior and began predating the skinks in the open. At least a dozen kites were hunting in less than 50 m of the road, swooping down to capture disoriented skinks in their talons. Occasionally a skink was missed but flicked over in the sand, only to be almost immediately taken by a second kite coming in at an angle to the first. Our attempts to collect skinks as voucher specimens were on occasion thwarted as the lizards were snatched from in front of our hands by kites from above. No estimate of the number of skinks taken by the kites was made, or even possible due to the speed and numbers of the birds, but it was probably several dozen during the 30–40 minutes between the skinks’ first appearance on the road and the fire dying down. How the number of skinks taken fleeing can be compared to those that die in the fires is also impossible to estimate but with the frequency of fires on the grasslands and the large number of kites in the vicinity it is likely that these two threats play a major part in skink survivorship and population density.

We noticed that the larger species, *C. mysi*, was more vulnerable to predation by kites than the smaller *C. curta*, many of which escaped the notice of the birds in the dusty sand and smoke. One snake was observed, either a treesnake (*Dendrelaphis* sp.) or Brownsnake (*Pseudonaja textilis*), but it crossed the road too quickly for the kites or us to react.

A sequence of three photographs, taken over a four-second period, show four *C. mysi* attempting to cross the road (Fig. 1). Skink 1 is taken by Hawk A which dives from the right, Skink 2 is taken when Hawk B comes in low from in front of camera, Hawk C flies up the road towards the camera then swoops onto Skink 3. At the end of four seconds only Skink 4 remained.

We thank New Britain Palm Oil Ltd. for facilitating our visit to Oro Province, by providing accommodation, food, and transportation, and Hayward Korina, our driver during our stay. MO thanks David Williams and the Australian Venom Research Unit/Charles Campbell Toxinology Centre, Port Moresby, for arranging his return to PNG and providing accommodation and transportation in Port Moresby.

MARK O’SHEA, Faculty of Science & Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton, West Midlands, WV1 1LY, UK (e-mail: oshea@markoshea.info); **OWEN PAIVA**, Charles Campbell Toxinology Centre, Port Moresby General Hospital, Boroko, NCD, Papua New Guinea (e-mail: owen.paiva@gmail.com).